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ABSTRACT

The potential for excessive plume impingement loads on Space
Station Freedom solar arrays, caused by jet firings from an

approaching Space Shuttle, is addressed. An artificial
neural network is designed to determine commanded solar

array beta gimbal angle for minimum plume loads. The
commanded angle would be determined dynamically. The

network design proposed here involves radial basis functions
as activation functions. Design, development and simulation

of this network design are discussed.
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Description

NOMENCLATURE

index of exemplar
index of kernel node (RBF)

index of output
number of exemplars

number of inputs

number of outputs
k t" output for itK exemplar

R A, solution to least-squares problem
cost function for optimization
centroid vector for jth kernel RBF

network error vector (length m)

number of kernel neurons
matrix used by least-squares, m x (M+I)

matrix used by least-squares, (M+I) x (M+I)

input vector for ith exemplar

output vector for ith exemplar
network residual error for ith exemplar

most significant regressor for jth kernel

bias on kth output

weight between jth RBF and k th output

(BXi - Cj_), the RBF
tolerance for regressor selection

smoothing factor for RBFs
row vector of output biases

weight row vector from jth RBF to output

transpose of Yi
matrix of radial basis functions (w/biases)



INTRODUCTION

Two photovoltaic solar arrays, such as that shown in Figure

i, provide power for early stage configurations of the Space
Station Freedom. These arrays are about 100 feet long and

40 feet wide, but are very thin, thus displaying typical

characteristics of large flexible space structures.

The flexibility of these solar arrays makes suppression of

dynamic loads difficult. A relatively small force, applied

with a large enough angle of attack relative to the array

plane and to a sensitive location on the array, could cause

the mast to fail [i]. One such force comes from the plume

(as shown conceptually in Figure 2) of a Space Shuttle

reaction control system (RCS) jet. These jets are fired

throughout the Shuttle's approach to Freedom, shown in

Figure 3.

The firing of the RCS jets is governed by the following

rules of thumb for proximity operations:

(1) The Shuttle stays within an approach cone of given

half-angle with apex at the berthing point on the

Station [2].

(2) The closure rate is confined to around 0.1% of the

closure distance -- the so-called 0.1% Rule [3].

The position of the solar arrays relative to the rest of the

Station is controlled by an alpha gimbal (which rotates

about the truss axis) and two beta gimbals, one for each

array, as shown in Figure 4. Since the alpha gimbal is

rotating a significant amount of inertia, and since it has a

large amount of static friction to overcome, the beta

gimbals are the only practical means for controlling plume

angle of attack.

The baseline solution to this problem is the locking of the

beta gimbals prior to approach, in a feathered position

determined a priori from structural dynamics analysis. A

plume impingement may still result if the arrays are not

feathered optimally.

The difficulties with casting this problem as one of active

beta gimbal control are as follows:
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(i) Each RCS firing has some "randomness" associated with

it, as they are under human control. The Shuttle pilot

chooses not only which jets fire and when, but also for

how long.

(2) Thruster plumes and their interaction with solid

surfaces are highly nonlinear and geometry-dependent,

making their modeling unwieldy for dynamic analysis.

For these reasons, the control problem is difficult to cast

into a standard framework -- but the problem lends itself

nicely to a neural network solution. Such a solution is

desirable because the approach is slow enough that the

network could command the arrays with a well-behaved

continuous function, avoiding potential problems with

residual vibrations [4].

The approach chosen here involves using a neural network,

such as shown in Figure 5, to act as an open-loop controller

(or, predictor), to determine an optimal commanded gimbal

angle (one which should minimize plume angle of attack) for

a wide range of approach scenarios. In particular, neurons

are chosen that apply radial basis functions as activation

functions, because they are well-suited for irregularly

positioned data, and because they enable the network to

learn faster than if it were trained using backpropagation.

The conceptual system design, including placement of the

neural network, is shown in Figure 6.

NEURAL NETWORK SOLUTION

Design. The radial basis function (RBF) methodology is

useful for dealing with irregularly-spaced data. In this

methodology, a linear function space is created which

depends on a distance measure between known data points.

This design is developed for a single output by Powell [5].

The RBF network depends on the selection of (a) centers for

the activation functions and (b) a smoothing factor, which

determines the degree of interpolation between known points.

If the number of centers selected equals the number of data

points, the data will be fit exactly, although this is not a

good design from an implementation perspective.

Several methods are commonly used for selecting centers.

Lloyd [6] and MacQueen [7] use the standard k-means



clustering algorithm as an iterative process over the entire

set of training data. MacQueen uses the same algorithm as

an adaptive process in real time. A commonly-used method

for selecting smoothing factors is the "P nearest-neighbor"

method given by Moody and Darken [8].

In this study, the Gram-Schmidt least-squares procedure

suggested by Chen et. al. [9] is used to determine the most

significant centers from all available candidates, given the

type of center chosen (in this case multivariate Gaussian)

and a user-selected tolerance used to trade off accuracy and

design complexity. The goal of this study was to minimize

the number of nodes, while maintaining normalized error

below five percent.

A single smoothing factor was assumed, with its initial

value determined using a nearest-neighbor criterion. The

design then depended only on three parameters: the number of

centers desired, the tolerance, and the smoothing factor.

The design procedure is:

(1) Select the smoothing factor (_) and regressor selection

tolerance (p).

(2) For the given training data, use one of the centroid

selection methods mentioned above, along with either

classical or modified Gram-Schmidt orthogonalization.

(3) Compare the RBF response with the desired response,

determining error and normalized error.

(4) Repeat steps (1)-(3) as needed until the design goal is
achieved.

The centroids of the kernel nodes were selected to

correspond with the training data. The initial smoothing

factor was chosen to be unity -- actually a good

approximation of nearest-neighbor data, shown in Figure 6.

This procedure is described in more detail, and the

equations describing the network design are given, in the

Appendix.

Traininq. Moody and Darken [8] have demonstrated that

"networks of locally tuned units" learn substantially faster

than backpropagation neural networks because they have

linear learning rules such as least-squares, as indicated



above for RBFs, while backpropagation alone requires
nonlinear learning rules, such as gradient descent. Having
settled on a design configuration for the network, learning
rules are simple. In this case, backpropagation was used,
and the learning rule was linear.

The training data used for this solution encompassed 500
seconds of simulated Shuttle approach to Freedom, starting
from a closure distance of 25 feet. The training data was
selected to exploit a priori knowledge of the 0.1% Rule and
an assumed 10-degree approach cone, as well as the
likelihood of multiple RCS firings in that range. This
resulted in 5000 input-output combinations provided by each
simulation. The inputs chosen for the network were as
follows:

o

o

o

o

closure distance

rate of change of closure distance

angular position within approach cone (two inputs)

rate of change of position within approach cone

(two inputs)

Six such simulations were used to generate the total set of

training data -- a total of 30000 points. The initial

conditions of the simulations were a guess at what

conditions would effectively partition the input space:

(i) edge of approach cone, +x direction

(2) edge of approach cone, -x direction

(3) edge of approach cone, +y direction

(4) edge of approach cone, -y direction

(5) approach faster than indicated by 0.1% Rule

(6) approach slower than indicated by 0.1% Rule

More comprehensive sets of training data have since been

developed [10], and more work could still be done in this

area. This is necessary because there are segments of the

approach where there is a significant amount of "switching"

between jets that could induce a plume load, and this

behavior must be enveloped as much as possible by the

training data for a valid design.

If the training data is persistently exciting over the

entire input space, retraining of the RBF network is not

necessary. Further, the network must only be designed for

one of the two beta gimbals, with a modification to output

weights for a second network required to command the other.
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TEST RESULTS

Testing was performed by implementing the neural network in

the simulation used for training, using initial conditions

other than those used to generate the training data. Before

implementation, more rigorous testing would be expected.

The performance of the network is found in terms of the sum

of squares of error between network output and known optimal

gimbal angle.

For a tolerance of 0.0001, the design process resulted in

260 kernel nodes. That's quite a few, but the test result

of this design is very good, as seen in Figure 6, especially

in the neighborhood of discontinuities in the input data.

The only problem with the response is oscillation near the
end of each run. This could result from narrow activation

functions employed by the kernel nodes. A design with fewer

nodes will of course be less narrow, and dampens oscillation

somewhat.

The design process was repeated with smoothing factors of 5,

7.5, I0, 15 and 25; yielding 61, 45, 44, 53 and 41 kernel

nodes, respectively, each with a bias. In general,

performance near discontinuities degrades as network

complexity decreases -- but the oscillation seen in the

initial design also goes away.

The results indicate that the "best" smoothing factor (in

terms of this study's goal) is somewhere between 5 and 15.

The design obtained with a smoothing factor of i0 (44 kernel

nodes) was selected as the best for this study, since it had

the least complexity and maintained normalized error below

five percent except in a small neighborhood of some
discontinuities.

The following table shows a comparison of sum of squared

error for the series of designs examined:
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#RBFs
1

260 .81
61 .45
45 .47
44 .70
53 .71
41 .82

45 .48
44 .71

Sum Squared Error

2 5 6 Avg.

.70

.52

.59

.62

.73

.99

i. 17
1.24

3 4

.40 .58
.59 .67
.55 .55
.57 .61
.51 .58
.82 .78

.55 1.07
• 57 1. ii

.26

.70

.58

.38

.32

.39

.58

.38

.32

.12

.25

.16
.13
.06

.25

.16

.51
.51
.50
.51
.50
.64

.68
.69

The final two rows of this table show the results of testing
designs with 45 and 44 kernel nodes with data other than the
six sets of initial conditions used for training data. The
table shows a compromise between performance and design
complexity for these two design cases•

CONCLUSIONSAND SUGGESTEDFURTHERWORK

This paper describes a radial basis function neural network,
applied to the problem of Space Station Freedom solar array
feathering for plume impingement load relief during Shuttle
approach. Such a neural network was designed to minimize
the angle of attack of expected plumes.

The design goal wasto minimize network complexity while
maintaining acceptable dynamic performance. The network was
trained with a set of 30000 data points, then tested with
additional data not contained by the training set. The
network showed very good performance.

Before such a network can be used in actual operation, it
must be trained with a larger and more persistently exciting
set of data, and tested with an exhaustive set, possibly
leading to the need for additional training.

The network could also have a more robust structure if it
takes advantage of position feedback from the beta gimbals.
The stability and performance of this control structure
should be determined and enveloped.
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Appendix. Radial Basis Function Neural Networks

Broomhead and Lowe [ii] represent RBF networks by the

mapping fik: _p _ Rq' such that

M

5=1

(i)

for 1 S k S q and 1 S i S m, and, referring to Figure 4,

Yik is the kth output for the ith exemplar;

10k is the kth output bias;
M is the number of kernel neurons;

ijk is the synaptic weight between the jth kernel function
and kth output;

is RBF _(R) = { ¢(r): r E _ );

x i is the vector of inputs, length p;

Cj is the vector of centroids for the jth kernel RBF.

Alternatively, the RBF can be represented by a matrix

mapping Fi: R p _ R q such that

M

z_ = Ao + _ At ,I,(11x_ - c 9 U) (2)
j=l

where the output bias and synaptic weights from (i) have

been lumped into a row vector.

Powell [5] formulates the multivariable interpolation

problem for real numbers in the same manner as was presented

above, for a single output. For this case, we can extend

the solution to a set of linear equations for the synaptic

weights, as follows:
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Ii
1 @(_X.,- C.,II) ..- ¢ ( ilXl - C.I)

1 4,¢n_ - C.,ll) ... ¢¢1i_ - C.I)
: : ".. :

1 _(IX_- C,ll) .-. ¢(nX..- C,.,ll)

_01 "'" _Oq

: -.. :

(3)

where Yi = Fi" We may make the following definitions:

[Y_ L .-.L] --[Y_r_ ...y,.]T

i ¢(Rxl- elM) -.- ¢(Ixi- c.M)

I (_(_X 2 - C_B) -.-@(IX 2 - c.ll)
0=

i i ".

1 ¢ (llXm- el1)--.¢ (aX,,- CMU)

[.,%...̂_] --

_01 "'" _Oq

_11 "'" llq

".. i

Xm --. _.q

(4)

from which we may see that the vectors of synaptic weights

can be solved for independently, decoupling (3) and reducing

it to

Y = e A (5)

For the special case of a square matrix of RBFs containing

no bias terms, Micchelli [12] proved that the matrix is

always nonsingular if the input data points are all unique.

Equation (5) is then solved simply, by inverting the RBF

matrix. This is an exact interpolation solution, and

requires that the number of RBF centroids equal the number

of exemplars.

This is impractical to realize for many applications,

particularly those in signal processing, and may even lead

to redundancy being used to fit noisy data. The general
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solution to (5), however, requires minimizing a linear

least-squares cost function,

J= UOA-¥ a2 (6)

which is minimized with the application of the pseudoinverse

of the RBF matrix,

K = (0 _'e) -_ e TY (7)

The RBF network can be uniquely determined by considering it

as q multiple-input, single-output (MISO) systems, each of

which is a special case of the linear regression model

_' = OA + g (8)

where E, a vector of length m, is the residual error

introduced by using the estimated weights of equation (7) as

opposed to the exact weights (and all the extra centroids
that come with them).

Park and Sandberg [13] have shown that the RBF network is

capable of universal approximations for activation functions
of the form

) (9)

which uses the same smoothing factor or width, a, for each

kernel node j. Typically-used RBFs, representing research

by Powell [5, 14] and Schagen [15] are shown in the

following table:
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_(r) RBF Classification

r

r2 log r

(r2 + c2)
(_ + c2)
e-(rlc)^Z

l/Z

-112

linear

cubic

thin plate spline

multiquadratics

inverse multiquadratics

multivariate Gaussian

Gaussian functions were selected here.

RBF learning can be considered a hybrid process. The first

step is finding the centroids, Cj, and the smoothing

factor(s), aj. The second step is finding the network
weights between the kernel and output nodes by solving

equations (6) and (7). These selections are critical in

determining network performance.

If we make the definition for the RBF matrix from (4), then

the orthogonal least-squares procedure transforms the

vectors 8 i into orthogonal basis vectors. The RBF matrix
can then be factored into

0 = Q a (I0)

where Q is an orthogonal (m x M+I) matrix, subject to

QTQ =

qlrqz . 0 0 ... 0

0 q2 TC2"2 0 ... 0

0 0 q3Tq3 ... 0

i i i "'. :

0 0 0 ... qM.ITqM+I

(ii)

and R is an upper triangular (M+I x M+I) matrix, given by
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R

1

0 I

0 0

0 0

0 0

11,2 --rl,3 "'" I1,M Z'I,M÷I

/_2,3 "'" /'2,M _2,M+1

...r3, M 1"3,M÷I

: ". i

0 ... 1 IS, N+ I

0 ... 0 1

(12)

Now, if we make the following definition,

z=RA (13)

then the solution to the linear least-squares problem given

in equation (7) is

: a K : (QTQ)-IQTy (14)

or equivalently, in terms of individual components,

_i - qiz Y (15)
qiTqi

Equation (15) can be considered a linear measurement model,
and for zero residual error the mean of the output is

: e X (16)

If the residual error is uncorrelated with A, then the mean

square error is given by the trace of the matrix formed by

multiplying (Y - expected value of Y) by its transpose.

For the scalar case, (16) eventually can be reduced to
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M+I

Iyry _ 1 _ zj2qjrq9 + IEr E (17)
m m j.1 m

The first term on the right-hand side of (17) is output

variance due to regressors z.. The other term is output
• • J

variance. The contrlbutmon of a particular regressor to the

output variance can be defined as

(18)
rb - yT y

for 1 S j S M+I. The definition of (18) allows for

regressors to be determined in a forward regression manner.

The Gram-Schmidt orthogonalization procedure is as follows:

(i) Initialization:

o

o

o

o

Set k to i.

Set Yt to Y.

For 1 < j < M+I, solve (15) for zj and (18) for

Let _i be the maximum value of _j and 1 be the j

at which _I was achieved.

(2) Gram-Schmidt Orthoqonalization:

o

o

o

Select ql equal to @t and use this to solve (15)

for z I.
Reorganize RBF matrix so that the first column of

the matrix is q1"
For this column, and for 2 _ j S M+I, do the

following:

I[I 5 = qlT _j/ qiTql

8J = ()i - rlJ ql

Yi : Yi-

(19)
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(3) Regressor selection: the number of regressors to be

selected is based on the chosen tolerance p (0 < p <

I). Regressor selection ends when

ME

p>l-_
k-1

(20)

(4)

where M becomes the number of significant centroids

selected by the procedure, or kernel neurons.

Procedure until termination:

o

o

o

o

o

Provided equation (20) is true and k < M+I, then

for k _ j S M+I, solve (15) for zj and (18) for

Let _k equal the maximum value of _j and 1 be the

j at which _k was achieved.

Set qk to 81 and solve (15) for zk

Reorganize the RBF matrix so that the first column

qk"
Perform Gram-Schmidt orthogonalization with

respect to this column, as in (21):

rks : qkT O/qkTqk

O_ = O_ - r_s q_

Yi.= Zi - zk qk

(21)

When the procedure is completed, form the R matrix and solve

for the network weights from (13). The selection of the

tolerance (p) is the key to balancing the accuracy and

complexity of the final network design. Chen et. al. [9]

give alternative selection criteria for signal processing

applications.

The strength of the RBF network is the localization of the

kernel nodes and the linear learning rules, which allow for

faster training than does backpropagation. To maintain this

advantage, the only weights updated in this design are those

between the kernel nodes and the output. In this case, even

the backpropagation learning rule [16] is particularly

16



simple:

i-1 j-0

(22)

for all j from 0 to M. Equation (22) gives the required

weight change between the jth kernel node and the network

output, for the ith exemplar P is 1 if j=0 and 8ij
• " J

otherwise. If we now defzne the network output for the ith

exemplar as oi,

M

j-0

(23)

then equation (22) is simplified,

m

_Xj = y
i=i

(Yi - °i) Pi (24)

for all j. In matrix form, (24) is

AA = yOr(Y - OA)
(25)

which leads to the backpropagation law for this case,

A = A +_A (26)

17
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